VASAVI COLLEGE OF ENGINEERING (AUTONOMOUS), HYDERABAD
 B.E. (CBCS) II-Semester Main \& Backlog Examinations, May/June-2019
 Basic Engineering Mechanics
 (CSE, ECE \& IT)

Max. Marks: 60
Time: 3 hours
Note: Answer ALL questions in Part-A and any FIVE from Part-B

Q.No.	Stem of the question	M	L	CO	PO
	Part-A (10 $\times 2=20 \mathrm{Marks}$)				
1.	List the characteristics of a couple.	2	1	1	1
2.	Express the force vector of a 100 kN force, passing from point $\mathrm{A}(2,4,1)$ to point $\mathrm{B}(6,7,8)$ and also write its unit vector.	2	1	1	1
3.	Define Free Body Diagram. Illustrate with an example.	2	1	2	1
4.	Three forces $\mathbf{F}=10(2 \mathbf{i}+8 \mathbf{j}-6 \mathbf{k}), \mathbf{P}=20(-8 \mathbf{i}-2 \mathbf{j}+5 \mathbf{k})$ and \mathbf{T} acting on a body maintains its equilibrium. Find the magnitude and direction of missing force \mathbf{T}.	2	2	2	1
5.	What is a truss? Explain with suitable example how its indeterminacy can be determined.	2	1	3	1
6.	Describe the relationship between the number of joints and number of members in a perfect truss.	2	1	3	1
7.	State laws of friction.	2	1	4	1
8.	A body is on the point of sliding down an inclined plane under its own weight. If the inclination of the plane to the horizon is 30°, what will be the angle of friction?	2	2	4	1
9.	State Parallel axis theorem and Perpendicular axes theorem.	2	1	5	1
10.	Define the terms Moment of Inertia and polar moment of Inertia. Part-B (5 $\times 8=40$ Marks $)$	2	1	5	2
11. a)	Three Force \mathbf{F}, \mathbf{P} and \mathbf{T} with Force multiplier $\mathrm{F}_{\mathrm{m}}, \mathrm{P}_{\mathrm{m}}$ and T_{m} as $12 \mathrm{~N} / \mathrm{m}, 20 \mathrm{~N} / \mathrm{m}$ and $30 \mathrm{~N} / \mathrm{m}$ starts from $\mathrm{O}(0,0,0)$ and pointed towards points $\mathrm{A}(1,2,3), \mathrm{B}(2,3,4)$ and $\mathrm{C}(-5,-2,-1)$ respectively. Find the Magnitude and direction of the Resultant Force \mathbf{R}.	4	3	1	2
b)	A flat plate is subjected to the coplanar system of forces shown in figure. Determine the resultant and its x \& y intercepts.	4	2	1	2
12. a)	Two cylinders are piled in a rectangular ditch as shown in figure. Neglecting friction, determine the reactions at various contact points.	4	3	2	2

b) A bar AB of negligible weight is subjected to a vertical force of 600 N and horizontal force of 300 N applied as shown in figure. Find the angle Θ at which equilibrium exists. Assume smooth inclined surfaces.

13. a) Differentiate between Method of joints and Method of sections.
b) Analyse the pin jointed plane frame shown in the figure using the method of joints. All horizontal and vertical members are 4 m in length.

14. a) A uniform ladder weighing 20 N of 10 m length is placed against a smooth vertical wall with its lower end 4 m away from the wall. The coefficient of friction between the ladder and the floor is 0.3 . Check whether or not the ladder will be in equilibrium in this position.
b) The $2225-\mathrm{N}$ block shown in Fig. is in contact with 45° incline. The coefficient of static friction is 0.25 . Compute the value of the horizontal force P necessary to,

(a) just start the block up the incline ,
(b) just prevent motion down the incline.
(c) If $\mathrm{P}=1780 \mathrm{~N}$, what is the amount and direction of the friction force?
15. a) From the first principles, locate the centroid of a triangle.
b) Find the moment of inertia about centroidal axes shown in the figure.

16. a) Find the resultant of the force system acting on the hook as shown in figure.

b) A weight W rests on the bar AB as in figure. The cable connecting Wand B passes over frictionless pulleys. If bar $A B$ has negligible weight compute the reaction at A .
17. Answer any two of the following:
a) Find the zero member forces and analyse forces in rest of the members of the truss shown in the figure.
b) A horizontal bar 10 m long and of negligible weight rests on rough inclined plane as shown in the figure. If the angle of friction is 15°, how close to B may the 200 N force be applied before motion impends.
c) Determine the volume generated by rotating the shaded area about an axis through base. All dimensions are in cm .

$4 \quad 2 \quad 2 \quad 2$
$4 \quad 2 \quad 3 \quad 2$

4342
$4 \quad 45$
2

6

M: Marks; L: Bloom's Taxonomy Level; CO: Course Outcome; PO: Programme Outcome

S. No.	Criteria for questions	Percentage
1	Fundamental knowledge (Level-1 \& 2)	60
2	Knowledge on application and analysis (Level-3 \& 4)	40
3	*Critical thinking and ability to design (Level-5 \& 6) $(*$ wherever applicable)	-

